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Abstract-The free-convection layer along a vertical flat plate is investigated theoretically as well as 
experimentally with a view to studying its instability and “natural” transition from laminar to turbulent 
flow. Stability calculations are carried out based upon the small perturbation theory for the exact 
velocity profile for the Prandtl number 10. Temperature profiles are measured along a vertical 
electrically heated brass plate in good agreement with the theory. By use of the dye technique the 
natural transition mechanism is investigated, i.e. onset of wave-motion, and subsequent distortion 
into three-dimensional pattern and also eventual breakdown are studied. A double-row vortex system 
arises in the free-convection layer. The wave-motion initially provoked outside the velocity maximum 
is found to be far more unstable than that formed inside the velocity maximum. Its mechanics and over- 
all effect on the stability and transition of the free-convection layer are discussed. The transition process 

is quite similar to that already observed in the ordinary boundary layer. 
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NOMENCLATURE 

arbitrary constant; 
wave propagation speed; 
specific heat at constant pressure; 
Froude number ; 
dimensionless stream function; 
dimensionless velocity; 
gravitational constant; 
modified Grashof-number parameter 
based on x; 
Grashof number based on x; 
coefficient of heat conductivity; 
total pressure; 
pressure of the basic flow; 
Prandtl number ; 
Rayleigh number ; 
temperature perturbation function; 
absolute temperature; 
ambient temperature; 
wall temperature ; 
dimensionless independent variable; 
velocity parallel to surface; 
velocity of basic flow; 
velocity normal to surface; 
distance from leading edge of the plate; 
normal distance from surface; 

* Research Associate. 

disturbance quantity; 
(-), dimensional quantity. 

Greek symbols 
wave-number ; 
coefficient of volumetric expansion; 
boundary-layer thickness; 
small parameter ; 
dimensionless similarity variable; 
dimensionless disturbance temperature 
function; 
dimensionless temperature function; 
wavelength of disturbance wave; 
viscosity; 
kinematic viscosity; 
dimensionless temperature amplitude 
function ; 
density; 
time ; 
dimensionless velocity amplitude func- 
tion ; 
stream function. 

Subscripts 
c, neighborhood of critical layer ; 
‘2 refers to inner critical layer; 

refers to outer critical layer; 
g: W, evaluated at the wall. 
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INTRODUCTION 
TRANSITION from laminar to turbulent flow has 
drawn the attention of many investigations 
throughout the years. In most of the experi- 
mental as well as theoretical studies, over-all 
effects of certain imposing conditions on transi- 
tion have been investigated. Many details of the 
actual mechanism of transition, however, still 
remain unknown. In recent years investigations 
have been centered on clarifying the intricate 
mechanism of transition through experimental 
studies. 

Experimental studies have been greatly en- 
hanced by’ the development of the small- 
disturbance stability theory. Although the 
stability theory provides no insight into the 
actual mechanism of transition, it does deter- 
mine under what conditions certain small 
disturbances would amplify or decay in a given 
flow. 

The present investigation was initiated in 
order to attain a better basic understanding of 
the “natural transition” process in contrast 
to the artificially stimulated transition process 
as studied by Schubauer and Skramstad [I], 
Schubauer and Klebanoff [2], Klebanoff and 
Tidstrom [3], Hama et al. [4] and Hama [5]. 
The free-convection layer along a vertical flat 
plate affords an excellent opportunity of studying 
the phenomena associated with “natural transi- 
tion”. 

Eckert and Soehnghen [6] and Eckert et al. [7] 
investigated the transition process in the free- 
convection layer along a heated vertical flat 
plate in air using an interferometer. The inter- 
ferograms, however, restricted the observations 
to only a two-dimensional picture. Since the 
transition process is intrinsically three-dimen- 
sional, only a limited understanding of the 
transition process was obtained. 

Birch [8] and Gartrell [9] introduced con- 
trolied disturbances into the flow about an 
isothermal wall. They attempted to find a relation 
among the various flow parameters which 
could be used to predict the effect of variations 
in flow conditions and disturbances on free- 
convection flows. However, they found empirical 
relations which hold only to their specific test 
conditions and not to free-convection flows 
generally. 

Recently, Eckert et al. [lo] studied the three- 
dimensional process of natural transition in a 
free-convection layer by the introduction of 
smoke threads into the heated layer. Vortex 
formation and break-up were studied visually 
and recorded in motion pictures. Some quanti- 
tative evaluations and effects of a single rough- 
ness element on the free-convection flow were 
also presented. 

Other experiments on transition in the free- 
convection fields over vertical flat plates and 
cylinders were performed by Saunders [I 1, 121, 
Hermann [13], Fujii [ 141 and Larson [ 151. 
These authors, however, were essentially con- 
cerned with the transition Rayleigh number. 
They found that transition took place at the 
Rayleigh number approximately 2-4 :< IO” in 
various fluids. 

Lack of theoretical investigations into the 
instability of free-convection flow provided an 
additional reason for careful analysis of the 
problem. Plapp [16] performed an analysis on a 
polynomial approximation of the free-convec- 
tion velocity profile in air. In addition to obtain- 
ing a neutral stability curve for the polynomial 
profile, he also obtained a portion of the neutral 
stability curve for the exact velocity profile. 
However, it was desired in the present investi- 
gation to obtain a more accurate solution based 
upon the exact velocity for a larger Prandtl 
number corresponding to water. 

THEORETICAL ANALYSIS 
Consider a steady-state free-convection flow 

about a vertical heated plate. Physical flow 
configuration and co-ordinate system are shown 
in the sketch on the facing page. 

The horizontal and vertical components of 
velocity are designated by u and v, the hydro- 
dynamic pressure by p and the temperature by f. 

Stability of the basic free-convection flow will 
be examined by the method of small pertur- 
bations inquiring whether a certain disturbance, 
which is superposed to the basic flow and which 
satisfies the equation of motion, is amplified 01 
damped out. A fundamental assumption con- 
ventionally adopted in the stability theory is the 
“parallel flow” condition which stipulates that 
the mean velocity U depends upon y only in the 
region where the stability criterion is examined. 
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The free-convection flow is a boundary-layer 
flow which can be well approximated by the 
parallel-flow concept, because the variation of 
u with respect to x is much smaller than with 
respect to y. The basic flow is now described by 
U = U(y), V = 0, P(y) and T(y) and is assumed 
to be a solution of the steady-state equations. 

Superimposed upon the basic flow is a two- 
dimensional disturbance varying in time and 
space. When the disturbance velocity com- 
ponents, pressure and temperature are denoted 
by %x7 Y, 71, % y, ~1, P”(x, Y, 9, b, Y, 4, the 

24 

resulting motion is given by u = U + ti; u = 6; 
p = P + b; t = T + L The governing equations 
are : 

where 

The continuity equation is satisfied by intro- 
ducing a perturbation stream function 

&‘(x, y, T) = d(y) eW-W (5) 

such that 

where 4 is a complex amplitude function of the 
disturbance, 6 -= 27rr/h is a real positive quantity 
and represents the wavenumber of the dis- 
turbance, whereas E is complex, E = E,. + i& 
in which Fr denotes the propagation velocity of 
the disturbance wave in the x-direction and & 
denotes the amplification factor. Depending 
upon whether F# is positive, zero or negative, 
the wave is amplified, neutral or damped out. 
In a similar manner a temperature perturbation 
may be expressed as 

f(x, y, 7) = 5 (y) ei6@-cif. (8) 

It is also appropriate to introduce the following 
dimensionless variables by dividing all of the 
quantities involved by characteristic quantities : 

rl = YP, 

t Primes denote differentiation with respect to the 
independent variable. 
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where the previous definitions are further substituted 

6 = ~~(Z)~(G~~)l’* and Gr, = gflAtx3/vz, 
in the coefficient of the body-force term, it is 

(9) 
easily shown that 

f ’ = Ux/2vm1/Grz, (10) 
,dAt I 

aFr aG (19) 

6 = (t - t,)l(tm - t,), (11) is identical with the coefficient of the viscous- 
$ I‘- $xf2vm62/Grz, 02) force tern.. Therefore, as far as the fundamental 

5 = mzu - t,), (13) 
perturbation equation (16) is concerned, the 
body-force term and the viscous-force term are 

c = ~xl2v*~Gr~, (14) of the same order of magnitude. As wiil be 

cl =TI (is. (15) 
shown below, however, the body-force term 
does not come into the stability computation. 

Substituting equations (5-15) into equations Hence, the stability analysis of the free-convec- 
(l-4) and neglecting the nonlinear terms with tion Aow is equivalent to dealing with the con- 
respect to I# and f, we obtain ventional Orr-Sommerfeld equation without 

(f’ - c)($” - aa$) -f”‘$ 
the body-force term. 

- & (+“” - 2a2+” + &$) _ s; E’, (16) (i) The ~~uj~c~~ volition 
= 

The inviscid solutions are expected to be 

(f’ - c)f - $8 = - $& (f” - cz”6) 

valid for large values of the Grashof number. 

(17) As aG + co, equation (16) by the virtue of 
equation (19) reduces to 

where G = Zd(2) (Gr,) IF4 is a modified Grashof- 
number parameter appropriately describing the 

(f’ - C)($” - a”$) -.f”‘+ = 0. (20) 

free-convection flow analogous to the Reynolds As a result of the inviscid approximation, 
number in the conventional boundary layer, sin~larities arise in equation (20) at the critical 
Fr = 4v$Grz/gSx2 the Froude number and points wheref’ = c. The velocity profile in the 
Pr = pq,/k the Prandtl number. Equations (16) free-convection flow as shown in the previous 
and (17) were derived previously by Plapp 1161 sketch has two critical points in contrast to only 
by means of a different non-~mension~iz~ng one critical point in the usual boundary layers. 
scheme. Equation (16) is the equivalent of the This fact gives additional complications in 
Orr-Sommerfeld equation7 with an additional stability analysis of the free-convection layer. 
contribution due to the body-force term, pro- The inner critical point qec located nearest the 
vided the Reynolds number in the conventions wall, whereas the outer critical point qco is 
On-Sommerfeld equation is defined as located outside the velocity maximum near the 
Re = U*~/V, where U* = 2v,d(Grz)/x. Equa- ambient fluid. The slope of the velocity profile, 
tion (17) is the counterpart of the Orr-Sommer- f “, is positive at ~a and is negative at qcO. 
feld equation for the temperature fluctuation. The solutions in the neighborhood of Q as 
The boundary conditions for these equations in given by Gregory et al [18], who considered a 
the case of an isothermal wall are: family of velocity profiles of which the free-con- 

(b(O) = CPYO) = 5(O) = 0, 
+,g,I-+O as ~-+co. > 

vection profile is a typical one, are in the form 

(18) 
(21) 

The effect of the density fluctuation appears 
& = (T - 17J&& - rlc)? 

in the additional body-force term $Atr/aFr 
which couples equations (16) and (17). When (22) 

- 
t For details see Lin [17]. The way of choosing the proper branch of the 
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logarithmic term has been established by earlier 
workers. (See Lin [ 171, p. 130.) 

Seeking a good representa~on of the solutions 
in the vicinity of the critical points, where 
f' - c can be replaced by fc”T and f “’ by fc”‘, 
a new variable z = (7 - v,)~)/E is introduced. 
The parameter E provides a stretching of the co- 
ordinate system and is generally considered 
small for neutral oscillations. e is to be chosen 
so that at least the largest terms are kept on 
both sides of equation (16). Thus only the terms 
(l/&)$“” on the right-hand side and iaG 
(f’ - c)(l/+7+J” on the left-hand side are 
retained. This is the reason why the body-force 
term again drops out. 

The parameter E becomes ct = (aGfJ)-1’3 in 
the neighborhood of Ed and Q, = (aG/fi)-113 
in the neighborhood ofyco. The viscous solutions 
are given as (see Lin [17] for details) 

#Pi = S_& z~‘~H$ [$ (iz)3’2] dz dz, (23) 

4ba = JYX SI-, z~‘~H$ [$ (iz)“‘“] dz dz, (24) 

where H$ and H$$ denote the Hankel 
functions of the first and second kinds of order 
one-third, respectively. 

(iii) The eigenvolue equation 
The eigenvalue equation is obtained by 

substituting a linear superposition of $1,2,3,4 in 
the boundary-condition equation (18). Since 
the Hankel Function H$ goes to infinity as 
z -+ co, it does not satisfy the boundary con- 
dition at infinity. Therefore +p should not 
contribute to the solution, and we have the 
following set of algebraic equations for constants 
B,, B2 and B, ; 

~~~~~0~ + B~#~(O) + ~~#~~O) = 0, 

&I@9 + &#;(o) + Ba#;@) = 0, I f25) 

&$I(cQ) + B2+2(~) + B343tm) = 0. j 

The Hankel function H$ vanishes as z + cc, 
and consequently &(co) + 0. Choosing +I so 
that #1(oo) = 0, we have B, = 0, and thus the 
system of equations reduces to 

&#l(O) + B*43(0) = 09 

&m) + B3MJ = 0. I- (26) 

Substituting the independent variables zd,, and 
zoo leads to the eigenvalue equation 

when the inner-critical point is considered, and 

for the outer-critical point. Appendix A describes 
the computational procedure for the inviscid 
function +,(O)/+;(O). The eigenvalue equation 
(27) is conventional. Equation (28) concerning 
the outer-critical point, however, gives only a 
rough approximation of the desired solution. In 
the stability analysis the first term of the Taylor 
series expansion for (f’ - c) is retained, i.e. 
the local slope of the velocity profile at the 
critical point is projected to the wall This 
procedure results in a large deviation from the 
actual velocity at the wall when applied to the 
outer-critical layer, whereas for the inner 
critical layer reasonable agreement is obtained 
at the wall. Therefore, even if the same mathe- 
matical procedure is applied to the stability 
criterion based upon the inner and outer critical 
points, the results due to the latter are inherently 
a rougher approximation. 

EXPERIhfENlAL EQUIPMENT 

The experiments were performed in a water 
tank 3 ft wide, 5 ft deep and 7 ft long. A vertical 
heated plate was made of brass 31 in wide, 
60 in long and O-25 in thick. The brass plate 
was one side of a double-wall construction which 
was mounted in a bakelite frame. The entire 
brass plate was heated by two circuits of No. 22 
~ic~ome wire. A variac controlled the current 
of the O-15 A circuits within O-1 A. 

In order to facilitate the analysis of experi- 
mental results, a grid consisting of 5 x 5 cm 
squares was marked on the brass plate starting 
at 30 cm from the leading edge. The temperature 
of the plate was determined from thirteen 
the~ocouples imbedded in the plate. All 
thermocouples used in this experiment had 
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copper-constantan junctions. The temperature 
field in the free-convection layer created by the 
heated wall was measured by a thermocouple 
probe as shown in Fig. 1. The thermocouple 
probe was attached to a traversing mechanism, 
as shown in Fig. 2. The traversing mechanism 
had an accuracy of traverse of 0.0005 in. 

K 
Thermocouple Wires (Glued On Lucite) 

, , r-L”cl+e Head 

Side View Top “,ew 

FIG. 1. Thermocouple probe. 

Th,ck) 

The thermocouple readings were recorded 
by a Leeds and Northrup Speedomax recorder. 
Actual temperatures were printed on tempera- 
ture-co-ordinate paper having a scale of 0-50°C. 
They could be read within the accuracy of 
approximately 0.05 degC. 

For the study of the stability and transition 
of the free-convection layer, the flow visualiza- 
tion technique of dye injection was used. 
Analine dyes were injected smoothly through 
three different types of dye rakes. For plan- 
view observation of the flow development, 
hypodermic dye rakes as shown in Fig. 3 
allowed black dye or black and red dye to be 
injected into the free-convection layer. A comb- 
type dye rake or an individual hypodermic 
needle was used for side-view observations. 
The comb-type rake emitted several colors of 
dye at various distances from the wall in a single 
plane so as to identify different flow paths at 
various distances from the wall. The flow 
experienced no ill effects from the dye rakes 
inserted into the flow field 6 in from the leading 
edge. 

Flow phenomena were analysed from both 
motion pictures and still photographs. 

RESULTS, OBSERVATIONS AND DISCUSSION 

Typical results of the temperature-profile 
measurements are plotted non-dimensionally 

in Fig. 4. The wall temperature was obtained 
by averaging the temperatures recorded from 
the imbedded thermocouples. This average wall 
temperature was in close agreement in nearly 
all instances with the temperature obtained by 
extrapolating the temperature profile to the 
wall. The local wall temperature also was in 
close agreement with the over-all average wall 
temperature. A typical wall temperature distri- 
bution is given in Fig. 5. Near the leading edge 
of the wall there is a flow-wise temperature 
gradient in the wall owing to a more intense 
cooling effect in this region. The wall tempera- 
ture, nevertheless, approaches an almost uniform 
value rapidly and the effect due to the small 
gradient near the leading edge is neglected; 
the two temperature readings obtained in the 
first 5 in are not included in averaging the wall 
temperature. 

The fluid properties included in the definition 
of the dimensionless variable 7 are evaluated 
at the ambient temperature tm. Since the tempera- 
ture difference between the wall and ambient 
temperature was small, the values of 7 did not 

Ax-36.2 Pr.6.70 
axm33.7 Pr.6.70 
Ox= 26.0 Pr*6.68 

- f’r=6.70 

0.41 
c 

0.2- 

1.4 
, I.6 

FIG. 4. Dimensionless temperature profile?. 
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FIG. 5. Typical wall temperature distribution. 
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FIG. 3. Dye sakes and dye comb. 
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change appreciably even when the fluid proper- 
ties were evaluated with the wall temperature 
as a reference temperature. Therefore, this is 
an arbitrary yet non-essential choice as long as 
the temperature difference remains small. 

The experimental results are compared with 
the theoretical temperature profiles interpolated 
from those calculated by Ostrach [I93 for 
various Prandtl numbers. Agreement between 
the theoretical and experimental temperature 
profiles is excellent. 

Equations (27) and (28) were solved for the 
velocity profile corresponding to a Prandtl 
number of 10, since it was assumed that it would 
provide an upper bound for a good representa- 
tive velocity profile for the free-convection flow 
in water. The solutions of equations (27) and 
(28), which refer to the inner and outer critical 
points, are plotted in Fig. 6 and Fig. 7, respec- 
tively. The indifference curves obtained from the 
intersection points on Fig. 6 and Fig. 7 are 
plotted in Fig. 8. Based on the inner-critical 
point the minimum value of G was obtained to 
be 3.46 x IO5 corresponding to c = O-0235 and 
a = 0.875. On the other hand, in spite of the 
approximation procedure in regard to the 
velocity profile for the outer-critical point in the 
stability calculations, somewhat more reasonable 
values for G were obtained. The lowest value of 
G obtained was G = 5040 at c = 0.005 and 
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a = 1.5. A marked shift in this portion of the 
neutral stability curve is noted and a more 
reasonable critical value is implied in these 
.results. 

Experimental results for the minimum observ- 
able wavelengths and the wave speeds are 
plotted in Figs. 8 and 9. Although the agreement 
between the measured minimum modified 
Grashof-number parameter and that predicted 
by theory based on the inner critical layer is 
poor, there is a fairly good agreement between 
the measured CC and c, and those corresponding 
to the minimum value of G. Comparing the 
experimental results with the c, a and G values 
obtained from equation (28), a better agreement 
in the G parameter is obtained, 8-10 times less 
than that predicted by the theory. But the a 

and the c corresponding to this G value provide 
less satisfactory agreement with experiment. 

Within the distance approximately 40 cm 
from the leading edge, thin black dye streaks 
move up the surface of the wall very slowly 
without showing any indication of breaking up. 
In this distance from the leading edge the flow 
was laminar. This laminar flow pattern can be 
seen in the lower portion of Fig. 10 in which the 
flow direction is from the bottom to top. 

At 55 cm from the leading edge a faint two- 
dimensional dye accumulation begins to appear. 
A rather concentrated, more definable dye line 

I REAL 

FIG. 6. Solution of equation (27). 
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FIG. 7. Solution of equation (28). 
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FIG. 8. Indifference curves and experimental data for the 
wavelengths. 
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FIG. 9. Indifference curve and experimental data for the wave speed. 

is seen at 60 cm, thus giving a wavelength of 
approximately 5 cm. 

The wavelength was obtained by averaging 
several measurements across the plate, since 
there was a certain amount of irregular trans- 
verse waviness exhibited by the wavefront. 
This transverse waviness, however, was not 
unexpected since the disturbance waves occurred 
naturally and were not produced by an artificial 
means of any geometrical regularity or at a 
specific frequency. Since the disturbance waves 
were formed arbitrarily in time as well as in 
space, a certain portion of a wave moving down- 
stream could be engulfed by a second wave 
started at a slightly higher x-location. 

As we proceed upwards with the flow in 
Fig. 10, it is noted that a “splitting” of the dye 

streaks begins to take place at the wavefront 
located at x = 60 cm. The splitting of the dye 
streaks appears because there is a secondary 
twisting of the dye streak near the plate surface. 
Although this twisting of the dye streak occurs, 
the free-convection layer still appears to be in a 
somewhat later stage of a still laminar flow, or 
in the initial stages of transition. 

The dye streaks roll up to form a vortex. 
This type of vortex rolling-up was demon- 
strated by Hama [5] for the boundary-layer flow 
over a flat plate. Tn all instances observed, the 
vortex continues to roll up and appears in the 
plan view as a highly concentrated dye spot for a 
single dye streak or as a concentrated dye line 
for several streaks. Such a concentrated dye 
line is observed in Fig. 10 at x = 60 cm. This 
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FIG. I I. Double-row vortex system in plan and side view. 
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concentrated dye line continues to be concen- 
trated and the wave amplified until a second 
splitting process occurs. The vortex, which ap- 
peared to be mainly two-dimensional, now begins 
to take on some three-dimensionalcharacter. Yet, 
from a side view it appears as a nearly twodimen- 
sionai rolling-up, but the plan view clearly shows 
the distortion into a three-dimensional formation. 
Before this three-dimensionality proceeds very 
far down-stream, several dye streaks all having 
the same character join in fo~ng a vortex 
loop. The edges of the dye streaks, which form 
the legs of the loop, are very cloudy and 
immediately burst into highly random motion 
mdicating the burst of a t~bulence spot. Any 
further observation is completely obscured by 
the dye clouds due to the random motion. 

Observations of single dye streaks from the dye 
comb produced rather unexpected results. A 
double-row vortex system is observed. A dye 
streak rolls up on the wall similar to that 
observed in conventional boundary-layer flow 
over a flat plate, whereas a dye streak outside the 
maximum velocity rolls outward in the opposite 
direction to that of the vortex formed on the 
plate. This vorticity distribution in the free- 
convection layer confirmed the speculation 
brought forth by Fujii 1141, although the actual 
phase relation between the two vortex rows 
differs from his sketch. Perhaps, more interes- 
ting to note is that Fales [20] observed a similar 
phenomenon when a jet of clear water issued 
into a bath of dyed water. A strong similarity 
exists between a jet velocity profile and the 
velocity profile obtained for a free-convection 
layer. 

The rolling up of the outer vortex begins to 
occur near the leading edge. When the outer 
wavefront appears, the inner dye streaks in the 
rear riding up the surface of the plate remain 
laminar as seen in Fig. 1 I, Several wavefronts 
of the outer dye streaks are observed in contrast 
to generally only two or at most three wave- 
fronts observed of the dye streaks on the surface 
of the plate as previously discussed. As the wave 
progresses upwards along the plate and appears 
to be amplified, the outer dye lines become more 
concentrated. The concentrated outer dye lines 
exhibit the same type of vortex rolling up as 
before until again the vortex loop is developed 

and eventual breakdown occurs. This break- 
down observed in the outer layer occurs at a 
distance from the leading edge when the inner 
layer is still laminar or only shows signs of 
initially entering transition. The outside rolling 
vortex is very strong and impresses its effect 
onto the inner layer. The inner layer is actually 
disturbed by the large amplification of the out- 
side disturbance wave and by its development to 
final breakdown. Hence, the inside wave is 
provoked by the highly unstable motion occur- 
ring outside the maximum velocity. This 
occurrence must result from the strong instability 
due to the inflection point in the velocity profile 
located outside the maximum velocity. The effect 
of inflectional instability is to overtake the flow 
completely and to control its behavior. This type 
of instability was clearly manifested in the 
breakdown of the free-convection layer from 
laminar to turbulent flow. 

The outside wave so dominated the flow that 
it impressed its wavelength onto the wave dis- 
turbance in the inner layer. The outside wave is 
completely established even before the inside 
wave begins to show signs of a vortex rolling 
up. Experimental data for the outer wave 
disturbance fall into the same region on the 
U-G plot as did the previously.measured data 
from the wave very near the wall. 

SU~Y AND CONCLUSIONS 

Theoretical as well as experimental investiga- 
tions of the instability and transition in the free- 
convection layer along a vertical flat plate have 
led to the following conclusions: 

(1) In the process of natural transition in the 
free-convection layer a double-row vortex 
system arises. 

(2) The instability due to the outer critical 
layer is predominant and sets in first, well in 
advance of the onset of any possible instability 
due to the inner critical layer. 

(3) The outside vortices completely control 
the behavior of the flow developments and 
impress their effect onto the more stable inner 
layer near the surface, provoking its instability. 

(4) The above observation explains why the 
critical Grashof-number parameter. experimen- 
tally obtained here and in the other literature 
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is so much below the theoretical Grashof- 
number parameter 3.46 x lo5 which is computed 
based upon the instability of the inner critical 
layer. Such an instability simply does not 
come into the picture. 

(5) The theoretical calculations for the mini- 
mum Grashof-number parameter based on the 
inner-critical layer for a velocity profile corres- 
ponding to a Prandtl number 10 produces 
values of Grashof number of the same order of 
magnitude as obtained by Plapp [16] for a 
velocity profile corresponding to a Prandtl 
number of 0.72. 

(6) The instability calculation based upon 
the consideration of the outer critical layer 
shows a drastic reduction of the theoretical 
Grashof-number parameter to the order of 103. 

(7) The transition process in the free-con- 
vection flow is essentially the same as observed 
in other cases. It is somewhat different, however, 
from that in the ordinary boundary layer over 
a flat plate as observed recently by Klebanoff. 
It is believed that, in the free-convection layer 
as in some other cases, the amplification rate 
is so high that the discrete vortices appear first 
before any other nonlinear mechanism begins 
to show up. 
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APPENDIX A 

Computatiog of’ the Inviscid Function &(O)/#l(O) 
in Equations (27) and (28) 

The inviscid solution & which is in fact a 
linear combination of two series solutions, is 
obtained for a chosen combination of a and c 
from the equation 

(,f’ - c)(+” - a?$) -f”‘$ = 0 (Al) 

with the boundary conditions 

l+(O) = 0, C(c0) = 0. (AZ) 

For large values of 7, r) > rleo, the derivatives 
of the velocity profile vanish and the equation 
reduces to 

4” - a"4 = 0. (A3) 

The solutions of equation (A3) are $ = e*aq. 
Imposing the condition $(Go) = 0, we see that 
only + = eeaQ is acceptable. Thus the exponen- 
tial solution gives the necessary starting values 
to integrate numerically from infinity inward 
to the wall. A difference scheme was used and 
integration of the equation 

(A4) 

was continued until the neighborhood of the 
singular point (f’ = c) was reached. In this 
neighborhood the solutions are given by 

(-46) 

These two series solutions are matched to the 
value +1 and the slope 4; obtained from the 
numerical integration of equation (A4) at a 
value of 7 slightly larger than 7eo. 

The solutions (A5) and (A6), valid only in the 
neighborhood of 7e, continue the numerical 
integration for C& through the singularity and 
once again allow the difference scheme to take 
over the integration for 7 < 7e0. The integration 
is continued until the solution reaches the 
neighborhood of 7ci. Here again the two series 
solutions as given by equations (A5) and (A6) 
are matched to the value 41 and slope 4;. 
Once the series solutions have taken us through 
the second singularity the numerical integration 
is continued to the wall where &(O) and &(O) 
are obtained. Thus the inviscid part of 
eigenvalue problem &(O)/+;(O) is calculated 
a given combination of a and c. 

the 

for 

Rbume-La convection libre le long d’une plaque plane verticale a et6 Ctudiee theoriquement et 
experimentalement en vue de controler l’instabilitt et la transition naturelle du regime laminaire au 
regime turbulent. Les calculs de stabilite ont ttC effect&s a uartir de la theorie de la uetite aerturbation 
pour le profil de vitesses exact et un nombre de Prandtl 6gal a 10. Les profils de temperatures mesures 
sur une plaque de laiton verticale ‘chauffee Clectriquement sont en bon accord avec la thtorie. On a 
Btudie le mecanisme de la transition naturelle par la technique des filets color&, par exemple, Ctablis- 
sement du mouvement ondulatoire et deformation consecutive d-allure tridimensionnelle. Un systtme 
tourbillonnaire double se produit dans la couche limite de convection hbre. Le mouvement ondulatoire 
provoque initialement au-de18 du point de vitesse maximum est beaucoup plus instable que celui 
form6 au-dessous de la vitesse maximum. Son m6canisme et son effet sur la stabilite et la transition de 
la couche limite de convection libre sont Studies. Le processus de la transition est tout a fait semblable 

a celui que l’on observe dans les couches limites ordinaires. 

Zusammenfassung-Fiir freie Konvektion an einer senkrechten ebenen Platte wurde die wandnahe 
Schicht theoretisch untersucht insbesondere auf Instabilitlt und “natiirlichen” Ubergang von 
laminarer in turbulente Stromungsform. Die Stabilitltsberechnungen beruhen auf der Theorie der 
kleinen Strijmungen des exakten Geschwindigkeitsprofils ftir die Prandtl-Zahl 10. Die an einer elek- 
trisch beheizten senkrechten Messingplatte erhaltenen Temperaturprofile stimmen gut mit der Theorie 
iiberein. Mit Hilfe der Farbetechnik wurde der Mechanismus des natiirlichen Uberganges untersucht, 
d.h. das Einsetzen der Wellenbewegung, die anschliessende Verzerrung in eine dreidimensionale Form 
und der eventuelle Zusammenbruch. In der Konvektionsschicht entsteht ein doppelreihiges Wirbel- 
system. Die zuerst ausserhalb des Geschwindigkeitsmaximums ausgelijste Wellenbewegung erweist 
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sich vie1 instabiler als die innerhalb des Geschwindigkeitsmaximums entstandene. lhre Mechanik und 
ihr Gesamteintluss auf die Stabilitat und das Umschlagen in der freien Konvektionsschicht werden 

diskutiert. Der Umschlagvorgang ist sehr Lhnlich dem der gewbhnlichen Grenzschicht. 

&IHOTa4JH~--~3y~aeTCFi TeOpeT4IYeCK41 41 3KCIlepHMeHTaAlbHO CJIOri CBO6OaHOti KOHBeKIJllll 

BAOJIb BepTMKaJIbHOt lIJIOCKO& IIJIaCTliHbI, er0 HeYCTOtiWBOCTb Ei <<eCTeCTBeHHbItiH IIepeXOA 

H3 JIaMHHapHOrO B TJ'p6YJ4eHTHbIti. Ha OCHOBaHLIR TeOpElf MaJIbIX BO3MJ'UeHHti IIpOBOARTCR 

padTb4 YCTO&UiBOCTM AJIH TOYHOrO IIpO@UIH CKOpOCTM, COOTBeTCTBy4O~erO 3HaYeHHIO 

KpllTepllR npaHATJIH, paBHOMy 10. TeMIIepaTJ'pHbIe IlpO$4fJIH, IlaMepeH,HbIe BZOJIb BepTH- 

KaJlbHOti WIeKTpWieCKH HarpeBaeMOi% JIaTyHHOfi nJlaCTAHb1, HaXOsRTCH Ll XOpOIIIeM CO- 

OTBeTCTBlIIi C TeOplleti. &'iCIIOJIb3yR. MeTOR OKpaIIII%BaH4iH, IlCCJIeJQ'eTCH MeXaHLI3M eCTeCTBeH- 

IIOrO IIepeXOAa, T.e. BO3H4IKHOBeHVle BOJIIIOBOrO ABWKeH4IH, IIOCJIe~)'IOII&ee pa3pyIIIeH4fe II 

CIIeKTp IIpOCTpaHCTBeHHOrO 06TeKaK4W II KOHeqHbIii CpbIR IIOTOKB. B CJIOe eCTeCTBeHHOti 

KOHBeKU4UI BO3HElKaeT CHCTeMa ABOtiHOI'O PRAa BHXpeti. Hatiueno, 'IT0 BOJIHOBOe AEIll~eHlie, 

BbI3BaHHOe BHaWJIe BHe MaKCIfMyMa CKOpOCTLi, HBJIFIeTCII 6OJIee HeyCTO&IlfBbIM, 'ieM DO- 

3HHKulee B npeaenax MaKCHMyMa CK~P~CTII. l'aCCMaTp4IBaeTCJI MeXaHAKa BOJIlIODO~O 

~nnmemin II ero mmnune Ha nepexoa c~10n CBOBOAHOB KoHBeKqm. npoqecc nepexoaa non- 

HOCTbH) nanontnnaer co6oti nponecc, H36mO~aeMbIti B 06bIWOM norpasnsno~ CJIOC. 


